Ogólne mechanizmy biochemiczne uszkodzenia komórek

Niektóre z czynników uszkadzających, mają bardzo ściśle określony punkt działania. Np. Clostridium perfringens, bakteria beztlenowa, produkuje fosfolipazy atakujące fosfolipidy błon komórkowych. W licznych innych przypadkach dokładny początek działania uszkadzającego pozostaje nieznany. Istnieją jednak ogólne mechanizmy istotne niezależnie od typu czynnika uszkadzającego.

Błony komórkowe:

Uszkodzenie błon komórkowych i utrata ich selektywnej pracy jest wczesnym i stałym, i chyba najważniejszym elementem uszkodzenia komórki. Niektóre bakterie i toksyny wprost uszkadzają zewnętrzne błony zewnętrzne komórek. Do uszkodzenia błony komórkowej prowadzi też aktywność cytotoksyczna limfocytów (perforyny).

Nieodwracalne uszkodzenie mitochondriów:

Sprawne mitochondria są konieczne dla przeżycia komórek ssaków. Tymczasem niemal wszystkie czynniki uszkadzają mitochondria. Uszkodzenie mitochondriów i zwiększenie przepuszczalności wewnętrznej błony mitochondrialnej ujawnia się jako tzw. nadprzewodzący kanał lub mitochondrial permeability transition w wewnętrznej błonie mitochondrialnej. Uniemożliwia to utrzymanie potencjału błonowego dla efektywnego procesu fosforylacji oksydatywnej i syntezy ATP. Zmiana początkowo jest odwracalna, potem jednak utrwala się i jest prawdziwym powiewem śmierci dla komórki. Ponadto zwiększenie przepuszczalności zewnętrznej błony mitochondrialnej i ucieczka cytochromu c z mitochondrium do cytosolu jest sygnałem dla rozpoczęcia apoptozy komórki.

Niedobór ATP:

Niemal wszystkie czynności komórek wymagają nakładu energii. ATP produkowane jest w mitochondriach na drodze fosforylacji oksydacyjnej. Drugim sposobem mniej efektywnym zachodzącym w warunkach beztlenowych jest glikoliza beztlenowa. Glukoza pochodzi z płynu tkankowego lub z glikogenu. Tkanki bogate w glikogen (wątroba) mają więc większe szanse przeżycia w razie uszkodzenia. Niedobór ATP jest bardzo pospolity w uszkodzeniu niedokrwiennym i uszkodzeniu toksycznym.

Reaktywne formy tlenu:

W czasie spalania (utleniania tkankowego) tworzy się niewielka ilość wolnych rodników tlenowych i innych reaktywnych form tlenu. Jest to mała ilość, nieporównywalna np. z liczbą wolnych rodników powstających w toku napromieniania promieniami jonizującymi, a na dodatek kontrolowana poprzez układ wymiataczy wolnych rodników. Zaburzenia równowagi w tym zakresie (choroba popromienna, zapalenia, szkoda tlenowa, metabolity chemikaliów, niedokrwienie i reperfuzja) mogą prowadzić do uszkodzenia komórek, np. poprzez uszkodzenie przez reaktywne formy tlenu (tworzenie w miejscu wiązań podwójnych kwasów tłuszczowych cyklicznych, nietrwałych nadtlenków).

Wapń naszym ostatecznym zabójcą? 

Wapń jest nam konieczny do życia. Większość jednak zjonizowanego wapnia znajduje się w płynie pozakomórkowym (10-3 M, a niewiele w cytosolu (10-7 M). I tak, większość wapnia wewnątrzkomórkowego jest sekwestrowana w mitochondriach i siateczce śródplazmatycznej. Utrzymywanie tej różnicy stężeń to zadanie dla ATP’azy zależnej od wapnia i magnezu. Uszkodzenie błon komórkowych i szereg toksyn powodują zarówno wyrzut wapnia z wewnątrzkomórkowych magazynów (mitochondria, siateczka), jak i zwiększenie napływu wapnia z przestrzeni pozakomórkowej. Początkowo dobrze funkcjonujące błony powodują sekwestrację nadmiaru wapnia. Równocześnie jednak nadmiar wapnia w cytosolu aktywuje szereg enzymów. Najgroźniejsza jest aktywacja fosfolipaz (dalsze uszkodzenie błon), proteaz (destrukcja cytoszkieletu), ATP’azy (zmniejszenie puli ATP) i endonukleaz (fragmentacja chromatyny). W uszkodzeniu nieodwracalnym to właśnie zwiększenie poziomu wapnia w cytosolu i niemożność jego sekwestracji doprowadza do uaktywnienia enzymów i destrukcji komórki.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *